CIRCULATION COPY

SUBJECT TO RECALL UCRL- 84015
IN TWO WEEKS PREPRINT

Ragter Generation in the Array Processor:
Trials and Traums

Neil Maron
Tom A, Brengle

This paper was prepared for submittal to
the 1980 Fourth Annual FPS Users!
Conference, San Francisco, California
April 28-30, 1980

February 25 1980

This is & preprint of a paper intended for publication in & journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Raster Generation in the Array Processor: Trials and Traumas
Neil Maron and Tom A. Brengle*
Lawrence Livermore Laboratory
Livermore, California 94550
ABSTRACT
The purpose of this paper is to discuss the methods we developed
to handle bit manipulation on the FPS Array Processor 38 bit main data

memory and to aiscuss the problems and successes in converting vector
graphics data to raster aata.

INTROCUCT ION

Previous measurements demonstrate the FPS Array Processor (AP) to
be six times faster than a PDPKI-1¢. This indicates that the AP may be
a powerful adjunct to the PDE-1@ in processes which are not strictly
floating point number oriented. Cne such application given
consideration is that of converting vector data graphics files to
compressed raster data files for subsequent plotting on a
printer/plotter which is connected to the PDP-1A. The conversion to a
raster requires a 1924 by 1624 bit buffer if one is using the brute
force methoa. Other methods involve sorting the vectors but require
more CHU cycles to perform the sort. If one has sufficient memory then
the brute force technique is asserted to be faster. In our
configuration the AP has 64K of slow main data memory (333ns MD).

we already have an existing PDP-1@ program to do this conversion
to raster and then compression for subseguent plotting. This program

is slow for several reasons. One of which is the PLP-1# has a virtual

*Work performed under the auspices of the U.S. Department of Energy by
the Lawrence Livermore Laboratory under contract number w-7405-ENG-48.

-

meirory operating system on it. In a virtual operating system
enviromnent a program which operates on data that is not very local in
nature will have delays caused by page faulting. The conversion part
of the program demonstrates these delays because of the large buffer
and inherent nonlocal nature of accessing it. Another reason the
progran 1is slow is that the compression part of the algorithm is very
CPU intensive since it is required to do byte level comparisons of the
data with the previous raster line as well as doing checks along a
raster line for repeating bytes.

The investigations to be discussed in this paper cover only the
conversion portion of the algorithm, that of converting vector data to
raster data. The compression portion will be presented at a future
time.

VECIOR TO RASTER CONVERSION

The process of converting vector data to raster data "merely"
requires determining which bits of a bit buffer (raster buffer) to turn
on. ‘Inere are several algorithms available for deciding which bits to
turn on yiven the (X,Y) endpoints of a vector. The bit buffer in the
AF uses 32,768 MD data words. It is configured as an array 32 by 1624
words. Each word uses only 32 of the 38 possible bits. 1Ideally the
right-most 32 bits woula be used. However, as will be discussed, this
is not possibie. (ne of the constraints in turning'on a bit in the
buffer is tnat no other bits be affected, i.e. one, and only one, bit
location should be turned on per access. This 1is accomplished in a
more conventional memory by inclusive ORing a 1 into the memory buffer
word at the appropriate bit location. Unfortunately the AP does not

allow for MD size (38 bits) word logical operations (OR, XOR, ANL) or

-3

shifts or rotates. These functions can be approximated by using an
existing set of operations in a nonconventional manner. This requires
combinations of SPAD operations, CR and MOVR (rotate), floating point
operations, FSCLT (floating scale truncate which approximates a rotate)
and FOR (floating OR). The AP hardware has been designed so that
normalization cannot be turned off. The implication is that if the
result of the FOR instruction is not normalizea it will be forced to be
norinalized, which causes the bits to be rotated in the mantissa, very
undesirable when the specific bits to be on or off are important and
the floating point value is not important. Another feature of the
hardware is that the programmer has only limited control of convergent
rounding. If the residue bits are set for some reason, the result
will, in general, be convergently rounded. The FSCLT (floating scale
truncate) instruction allows trucated rounding (i.e. no rounding) to
occur but the FOR instruction will always round. 'lhe result of this
aiscussion 1is that in order to avoid the problems with rounding and
normalization, always set what we will call the "normalize bit". Thié
is the least significant mantissa bit exclusive of the sign bit.

Anotner potential problem arises if it is desired to treat the
sign bit as an useful data bit. To avoid any problem it was decided to
always iake the floating point number look positive, i.e. the sign bit
always equals zero. This leads one to use only the right most 26 bits
ot the mantissa. Since each word must contain 32 bits, we are required
to use 6 bits of the exponent field for the remaining bits. Since the
exponent is 1@ bits wide, using 6 of them does not pose any particular
problem. The most convenient way to make sure the sign bit is always

otf and the "normalize bit" is always on is to preload the array with a

-y
floating point 8.5 value. So when it is time to initialize the array
(i.e. clear or erase it) for a new frame, we loéd the array with #.5.
More particulars on the implementation will be deferred until later.
What is established now is the fact that we can have 32 pits per words
which can be treated as individual bit addresses.
TURNING ON THE BIIS

we now develop an AP routine which we will call FILLAP. It is
callea with two parameters, the X and Y bit address, each of which runs
from ¥ to 1923. ﬁhe Y address can be used directly to generate a row
address in the two-dimensional array buffer /FIELD(32.,1924.)/. The X
value is uivided into two parts. The high 5 bkits generate a column
address into the array and the low 5 bits specify which one of the 32
bits of the addressed word to turn on. Having located the correct word
in MD, amnd having generated the constraints on which bits in the word
it is most convenient to use, we will get down to the business of
actually getting the bit turned on.

Fran the previous discussion, we noted that there are two cases to
consider. The first case is when the desired bit is one of the twenty
six bits in the mantissa. The second case is when the desired bit is
one of the six bits in the exponent. The first case is handled by
scaling a 1l.¢ to position the "on" bit to the appropriate location and
then associating with the resulting mantissa the exponent from the
buffer memory word. The exponent of the buffer memory word must be
usea to prevent the floating adder unit from repositioning the bit to
be ORed when aligning the exponent fields. The buffer memory word and
scaled 1.0 (with its appropriate exponent) are then FORed together and

the result is stored back into memory.

-5

Ine secona case is handled by treating the exponent as a separate
integer field that can be accessed in the MD. A note of caution here:
when transferring between D and the SPADs to or from the exponent
field, an exponent bias is added or removed. Since the exponent field
is ten bits wide, the bias, for our purposes, can be ignored for the
most significant six bits. Realizing this, we just read the exponent
portion of the memory word into an SPAD. To turn on the appropriate
bit a loop ié set up to rotate a 1 into the correct position, then the
two SPADs are Oked together. The result is stored into the exponent
field in a data pad register and the entire new word is stored back
into tne buffer memory.
TIMING TEST AND RESULTS

Tne subroutine which contains the algorithm for determining where
to place the dots when converting from vectors to rasters is called
URAW. It is written in FCRIRAN and was compiled with APFIN (the FPS
FOKTRAN cross~compiler). DRAW is a completely integer routine and uses
very simple standard FORLRAN, 'the timing of DRAW, exclusive of calls
to FI1LLAP, are given for slow memory in AP clock cycles. This equation
is only an average since there are several branches in DrRAW. "KN" is
the length of the resulting vector in bits. Time=148+59N cycles per
vector. Each on-bit generates one call to FILLAF which (on average)
requires 36 cycles. The aggregate result is 148+95N cycles per vector.
A sample test plot was generated which has 6 1824-bit long vectors and
one each of 2, 4, 8, 16, 32, 64, 128, anxi 256 bit long vectors. This
gives an average of 634202 cycles or 126 milliseconds (ms). The PDP-1¢
reqguired 458ms to accomplish the same task yielding a performance ratio

of 4.3(AP) to 1 (PDP1#). This is not the factor of six improvement

-5
that we might have liked to see. However, this speed enhancement is
sufficient to deem the endeavor a success. 'The porfion of the
conversion yet to be done is the compression. This is expected to gain
at least the same factor of four because each row can be broken down
into its bytes and then comparison can go on in the SPADs.
HAST MODIFICATIONS -

The modifications to the Host AP Software Interface (HASI) were
limited to the routine REBACK (see appendix). For test purposes it was
necessary to read the bit buffer back to the PDP-18. 'Iwo simple
changes haa to be made to the HASI to accommodate this. The PDP-10
common block was called BUFXX and actually contains more variables than
just FIELD. By simply replacing the common block generated in the HASI
with the appropriate name and variables the correct 1linkage was
obtaineu. The second change was required to allow long integers to be
transfered from the AP to the PDP-14. The only format recognized by
APAL for integers is 16 bit integers. APEX and the interface will
actually allow long (full FCP word) integers. By changing the format
type generated in the APGET call in the HASI we were able to transmit
pack the 36 bit integers.

CONCLUSIONS

Whereas doing long (32bit) integer arithmetic is very cumbersome
on the AP, the manifest speed difference between the AP cycle time and
the PDP-10 average cycle time is sufficient to allow consideration of

the Ap for non-floating point tasks.

REFERENCES

1. B. J. Heath, "Electrostatic Plotter Raster Construction Using
the AP-120B", Proceeding of the FPS Users' Group 1979 ppllé-132.

APPENDIX

The following appendix contains a listing of the APAL code used to
link to the AP FURTRAN, clear the buffer (ERASE), read the finished
bufter back to the- host (REBACK), amdi actually turn the bits on
(FILLAP). REBACK actually does nothing useful for the AP data but
instead provides a way for the HASI to get access to the AP data
buffer.

STITLE REBACK
"WORCE A READ BACK OF ‘IHE BUFFER TO THE PDP-1¢
"CULDED BY NEIL MAKON 19FEB8G LLL

SSUBR REBACK,©

SCOMIO BUFF 1 “AP TO HOST ONLY

SCOMMON /BUFF/ FIELD(32.,1024.)/R
REBACK: RETURN

SEND

STITLE FILLAP " (IX,IY)
“pPILL AP MEMCRY WITH A 1 BIT AT (IXx=0-1023) (1¥=0-1223)
"CODED BY NEIL MARON 240CT79 LIL

$SUBR FILLAP,2

SCOMIO BUFF @ "NO TRANSFER

SPAREM 2, AIX, AIY

SCOMMON /.LOCAL/ AIX,AIY

SCOMMOUN /BUFF/ FIELD(32.,1¢24.)/R

"SpPAD
Td SEQU g
Tl SEU 1
IX SEGU 2
IY SEQU 3
EXY SEQU 4
IXw SEQU 5
I8IT SEQU 6
FILLAPr: LOMA; CB=AIX "GET IX
LEMA; DB=AIY "GET 1Y
NOP)
LCMA; DB=MD
LDMA; DB=MD
NOP

LDSPI IX; DB=hHD

LDSPI IY; DB=MD
“IXwW=IX/32=IX SHIFT RIGHT 5

MOVK IX,IXW

MOVRR IXW,IXwW

-8~

MOVRR IXw,1XWw
"ISIT=IX .AND. 37(8) =>PICKING LOW 5 BITS

LDSPI IBIT; DB=37 "GET THE SBIT MASK
AND IX,IBIT "DO THE AND
GET FXY=<FIELD(IXW,1Y)>=FIELD+IY*32+IXW=(1Y SHIFT LEFT 5) + IXW + FIELD
MOVL IY,FXY "MOVE 10 DLSTINATION AND DO FIRST SHIFT
MOVL FXY, FXY
MOVL FXY,FXY
MOVL FXY,FXY
MOVL FXY,FXY
ADD IXw,FXY ~ “NOw ADD IXW
LDSPI 1;DB=FIELD "GET VALUE OF FIELD
ADD 1,FXY "NOw ADD FIELD AND WE ARE DONE

"NOw BRANCH TC THE APPROPRIATE SECTION OF CODE
“FOR IX= TO 31 AND APWORD= (lUEXP) (1SIGN) (27MANT) WE MAP
"AS FOLLOWS: (THINGS IN [) ARE ACTUAL VALUES, UN[]-ED NUMBERS ARE BIT POS.
* [X]1X]) [X] [X])912345(9] (1]6..31 FIELD WORD CONTENTS
" ¥ 1 2 3456789 EXPONENT
" g 1 2..27 MANTISSA FIELD
"NOLES: SIGN IS ALWAYS OFF=POSITIVE AND NORMALIZE BIT IS ALMWAYS ON(=1)
" CASE 1 FOR IBIT=6 TO 31
* CASE 2 FOk IBIY=9 TO 5

- LDSPI 19; DB=5 "CHECK FOR 0-5

sus¢ 1BIT,T9

BGE CASE2; LDSPI T1; DB=3 “JUST IN CASE ITS CASE 1 WE NEED A 3

Honu

Caskl: suB T1,IBIT; “SET FOR FSCLT INSTR
LDTMA; DB=!ONE "GET A 1.0 TO SCALE
MOV# FXY,FXY; SETMA "GET WORD
NCP
DPX<TH

DPY<MD; MOV# IBIT,IBIT; FSCLT DPX
FADD; LDSPE T@; DB=DPY “GET EXP FROM MEM WORD

DPX<FA "STORE NORMALIZED BIT INTO DPX

FOR CPY,MDPX; MOV# T@,T0 "OR TOGETHER USING MEM EXPON

FADD “PUSH

MOV FXY,FXY; SEIMA; MI<FA - "DONE, PUT RESULT INTO MEM
CASE2: MOV FXY,FXY; SETMA "GET MEM WORD

LDSPI T1; DB=100 "BIT 1O TURN ON

MOV IBIT,IBIT

C2LO0OP: BEQ C20KAY; MOVR T1,T1 “"SPARE ROI' IS OKAY-DONT GET MD YET
DEC IBIi; BR C2LOOP

C20KAY: LDSPE ‘10; DB=MD; DPX<MD “GET EXPON AND SAVE MEM IN DPX

OR '1,T8 "OR BITS

DPX<{SPEN; WRLEXP "wWRITE NEW EXPONENT ONLY
MOV FXY,FXY; SETMA; MIKDPX "STCRE NEW WORD
KRETURN

SEND

n
"ENTRY 10 ERASE THE FIELD
L]
STITLE ERASE
$SUBR ERASE, 6
S$COMIC BUFF € "NO DATA TRANSFER
$CUMMON /BUFF/ FIELD(32.,1924.)/R

=0

ERASE: LDSPI ¢; DB=FIELD-1 "INIT START ADDR -
LDTMA; DB=!HALF "GET A .5 TO STORE
LDSPI 1; DB=32768. "INIT LENGTH

ERASEL: DEC 1
INC @; MI<KIM; SEIMA; BGT ERASEL
RETURN
SEND

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States
Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe
_privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.

